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A simplified theory of magnetohydrodynamic 
isotropic turbulence 

By R. BETCHOV 
Aerospace Corporation, El Segundo, California 

(Received 23 October 1962 and in revised form 27 March 1963) 

The simplest case of turbulent motion in a conductive fluid is studied. The tur- 
bulence is assumed incompressible, isotropic, homogeneous, charge invariant and 
free of fourth-order cumulants. The emphasis is placed on certain integrals of 
the correlation functions such as kinetic and magnetic energy, vorticity, and 
current. A system of non-linear ordinary differential equations is derived which 
governs these integral quantities. Several cases are solved numerically, illu- 
strating the decay of ordinary turbulence, the buildup of magnetic energy by 
a linear or a non-linear process, the buildup of kinetic energy, as well as the 
destruction of vorticity by Lorentz forces. 

In order to handle certain dissipative effects, a special hypothesis is introduced 
which seems to promote mathematical simplicity. In particular, it  leads to a 
simple decay law very similar to the decay law of ordinary turbulence. 

1. Introduction 
The ordinary kind of turbulence involves only two forms of energy; kinetic 

energy and heat. If the fluid is electrically conductive, a third form of energy can 
appear: magnetic energy. Essentially, fluid particles may behave as electric 
motors and generators, and fluctuations of the electric current and of the magnetic 
field can develop. The energy will decay into heat either by viscous friction or 
by ohmic losses. This is called magnetohydrodynamic (MHD) turbulence. 

An interesting property of MHD turbulence is that energy can be transferred 
reversibly from the kinetic form to the magnetic form. This transfer is related to 
the work of the Lorentz forces; it  can produce considerable magnetic fluctuations 
and thereby increase the production of heat. Another interesting property comes 
from the fact that the Lorentz forces, proportional to the cross-product of electric 
current and magnetic field, are not conservative. Therefore, they can either 
increase of decrease the angular momentum of a fluid particle. This results in 
the production or destruction of vorticity , by an isotropic and homogeneous 
mechanism. 

The main objective of this paper is to study the mechanisms for energy ex- 
change and for vorticity production from the point of view of classical fluid 
dynamics. Numerous assumptions are necessary in order to progress toward 
this objective, and they are listed carefully. This leads to a system of equations 
describing the gross features of a simplified form of MHD turbulence. This 
system can be integrated by an electronic computer, and several numerical 
solutions are given and discussed. 
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2. Related work and outlines 
Magnetohydrodynamic turbulence is inherently far more complicated than 

ordinary turbulence. When the magnetic fluctuations are sufficiently small, 
they are governed by the velocity fluctuations and do not react on the flow. 
Isotropic turbulence has been the object of several contributions, notably by 
Batchelor (1950), Batchelor & Proudman (1956) and Moffatt (1961). The case of 
interacting kinetic and magnetic fluctuations has been studied by Tatsumi 
(1960), Roberts & Tatsumi (1960), and Chadrasekhar (1955). Chandrasekhar 
discussed a variety of correlation functions of the second and third order which 
can be built up from kinetic and magnetic fluctuations and wrote down the 
equivalent of the Karman-Howarth equation. Tatsumi focused his attention 
on the two energy spectra, and, by discarding the fourth-order cumulants, 
obtained a closed but very complicated system of integral equations. As for 
anisotropic forms of MHD turbulence, the possibility of an eddy resistivity 
bearing some analogy to Reynolds stresses has been pointed out by Kovasznay 
(1960). 

In  general, it appears that formal analysis of the simplest forms of MHD 
turbulence leads to impassable roads. In  view of the meagre results obtained by 
those who have studied the correlation functions of ordinary turbulence, the 
hopes for a successful analysis of MHD correlations are very dim. Let us remember 
that, in the case of ordinary turbulence, one of the simplest questions is not yet 
satisfactorily answered. Indeed, the rate of production of mean square vorticity 
has repeatedly been measured with an observed non-dimensional value of 
0.4 0-05. The theory of Proudman & Reid (1954) cannot yield numerical values 
unless the viscous terms are dropped. In  the non-viscous treatment, their 
theory predicts an asymptotic value 0.78 with the implication that the mean 
square vorticity becomes infinite. According to Betchov ( 1956), the same 
quantity cannot exceed the limit 0.756. The argument of the latter paper is 
purely kinematic and does not invoke the dynamic equations. Both theories 
assume that the fourth-order cumulants are negligible and this may be the cause 
of the poor agreement with the experimental value. 

In this paper, we abandon the idea of dealing with correlation functions and 
attempt to describe the turbulence by certain key quantities, few enough to be 
handled by an electronic computer. In the case of ordinary turbulence, there 
are three key quantities, and these are the mean kinetic energy (integral of the 
spectrum), the mean square vorticity (second moment of the spectrum), and the 
skewness (second moment of the spectral transfer function). The time deri- 
vatives of these three quantities can be expressed from basic equations and they 
depend upon some additional quantities such as the fourth moment of the 
spectrum. In order to evaluate these additional quantities, one must make 
some assumption about the shape of the spectrum or the effect of phase relations. 
This amounts to postulating the general shape of certain correlation functions, 
without determining certain over-all scales. The result is a closed set of three 
non-linear ordinary differential equations which describes the gross properties 
of ordinary isotropic, homogeneous, and incompressible turbulence. 
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The same procedure can be applied to MHD turbulence for which the number 
of key quantities increases from three to eight. Several other quantities must be 
determined by some assumption, and for the time being, we have chosen a 
simple and general type of relation, which can always be reconsidered at some 
later stage. In  particular, the recent work of Moffatt (1961) has given some clues 
on possible spectral shapes. 

3. Basic equations and notations 

xi, t 
U i  velocity 
hi 
P,P 
V kinematic viscosity 
h 
P? p 

Notations 

space and time co-ordinates 

magnetic field in kinematic units (that is, multiplied by .J(p/p)) 
permeability and density, both taken as unity 

kinematic resistivity (with conductivity IT, h = l/pa) 
kinematic pressure, and kinematic total pressure. 

Double correlations 

K ,  M 
R mean square vorticity 
J mean square electric current 
4, 1, 

twice the kinetic and twice the magnetic energy per unit mass 

characteristic fine scales of R and J (see equations (5 .5 ) )  

Triple correlations 
x rate of vorticity production (see equation (5.6))  
X rate of energy transfer (see equation (5.8)) 
R correlation between vorticity and curl of Lorentz forces (see 

2, Y , A  defined by equations (5.10) and (5.9) 
D,, D,, D,, D, groups of dissipative terms associated with the changes of 

equations (5.10) and (5.9)) 

8, x, y ,  Q 

Uiki = a2ui/ax,axi 
pi = aplaxi 

3 

1 
ai bi = 2 ai b, 

Conventions 

0 
c,, c,, c, 
a,P,y 

ensemble average or space average 
constants used in expressions for D,, D,, D, 
constants used in expressions for I,, I, (see equations (7.4) and (7.6)) 

Basic equations 
The fluid is assumed incompressible, viscous, and electrically conducting. It is 
convenient to take the density as unity and to measure the magnetic field in 
units such that the magnetic energy density is simply &hi hi. This amounts to 
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representing the magnetic field by the corresponding Alfvh velocity. The 
equations of motion are 

ahi 
- + uk hi, - hhikk = hkuik, 

u,,.~ = hkk = 0. 
at 

The total pressure P is defined as 

P = l~ + Shk hk, 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

and from equation (XI), it satisfies the relation 

4. Basic assumptions 
We shall make the following six assumptions. 

(i) and (ii) The turbulence is homogeneous and isotropic. This restricts the 
problem to a simple situation without violating any physical law. 

(iii) The turbulence is incompressible. This is in violation of what we can 
expect in a plasma, but it greatly simplifies the analysis. 

(iv) The turbulence is charge invariant. This means that the turbulent pro- 
perties are assumed invariant under a transformation that reverses the sign of 
all electric charges. Since the basic equations are charge invariant, this assump- 
tion only requires that the initial conditions and boundary conditions be charge 
invariant. For example, this assumption implies that the correlation between 
fluid velocity and electric current, both taken at the same point, must vanish. 
Indeed there is no a priori reason why one kind of electric charge would accom- 
pany the fluid rather than another. This assumption would break down if the 
microstructure of the plasma should become important. It eliminates many 
terms and is perhaps not necessary. 

(v) All fourth-order cumulants are zero. This is the well-known hypothesis 
of Milliontchikoff, which permits reduction of quadruple correlations to pro- 
ducts of double correlations. This assumption is needed to obtain a closed system 
of equations. 

(vi) The dissipative effects have a simple damping action. This novel assump- 
tion is described in detail in 9 7.  Since we do not use the full correlation functions, 
an assumption of this kind is necessary to close the system of equations. 

5. A catalogue of tensors and invariants 
In  this paper, we are concerned only with mean products of quantities mea- 

sured at  the same point. Beginning with the velocity, we use the assumptions of 
homogeneity, isotropy, and incompressibility to show that 

(uiuj)  = $KSij, (5.1) 

(5.3) 
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where K is twice the kinetic energy per unit mass, and R is the mean square 
vorticity. In particular, 

K = (u iu i ) ,  R = (uijuii) ,  ( u i j u j i )  = 0. (5.3)  

M = (hi hi),  J = (hij  hii), (hii h j i )  = 0, (5.4) 

Similarly, the corresponding relations for magnetic field correlations are 

where M is twice the mean magnetic energy and J is the mean square electric 
current. 
We shall also encounter mean square second derivatives, which will be expressed 
in terms of the characteristic lengths I ,  and I ,  defined by the following relations: 

(uiiiuikk) = Rll?, (hijjhikk) = J/ l& (5 .5)  

Invariants such as (u iu i j jkk )  can easily be expressed in terms of (u i j ju ikk )  by 
assuming homogeneity and incompressibility. 

The only triple velocity correlation encountered in this paper is defined as 

s=- (  uij U j k  Uik). (5 .6)  

(5.7) 

It indicates the rate of stretching of the vorticity. The following relation can 
also be demonstrated 

The magnetic field is involved in other triple products, such as 

(UiiUjkUki) = 0. 

X = (u i j  hi h j ) ,  (5.8) 

which measures the power generated by the Lorentz forces or the stretching of 
the magnetic field. It is simply related to invariants such as (u ih jh i j ) .  Out of 
a total of 22 invariants containing one velocity component, two magnetic field 
components, and three derivatives, such as (uijkk hi h j ) ,  or (ui hji hjkk),  only four 
are independent (see appendix). We define 

(5.9) I E = (uijhikhik), 

G = (Uij hkihkj), 

F = (uijhikhkj), 

H = - ( U i j h j h i d ,  
and also 

!J = E + F - H ,  Z = H - G ,  z’= F - E - G ,  A =  E + G .  (5.10) 

It can be shown (see Appendix) that !J is the mean product of the vorticity and 
the curl of the Lorentz forces, and that Y measures the stretching of the electric 
current by the rate of strain. The quantity Z will be identified later with the rate 
of production of electric currents. 

The quadruple products of velocity components and their derivatives can be 
reduced to double correlations by assuming that all fourth-order cumulants are 
zero. If two derivatives are involved, this leads to terms proportional to K R .  
If four derivatives are involved, this leads to terms either in R2 or in KRlF2. 
Since I ,  is usually the smallest scale of the motion, the terms in KR1i2 are larger 
than the terms in R2. Similar expressions exist for the quadruple products of 
magnetic fields, leading to terms in MJ1T2 and J2. Again, we surmize that the 
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terms in MJZL~ will be larger than the terms in J2.  We also encounter mixed 
velocity-magnetic invariants leading to terms in MR, MR1i2, or RJ.  

The pressure appears in many terms and a general discussion would be quite 
lengthy. Since the pressure terms do not play an essential role in the final equa- 
tions, we shall only summarize our results. Considering invariants such as 
(pijuiuj), one finds they are all of the order of K R ,  multiplied by numerical 
factors Yl or Y, that depend upon the shape of the kinetic energy spectrum. 
Invariants such as ( p Z j  hi hi) are of the order of MJ with factors Y3 and Y4 that 
depend upon the shape of the magnetic energy spectrum. Invariants such as 
(Pi j thikthjk)  contain four derivatives, and can be expressed in terms of six in- 
variants by using isotropy, homogeneity, and incompressibility. After con- 
siderations of the pressure equation, only three independent quantities remain, 
and we have the following useful relations 

(5 .11)  1 (p i j?hikUjk)  = -(CD2+9)R2/8, (f?i.iujkUjk) = R2/15, 

(eqi5ukiuJ.j) = (as+%) R2/8, (<' iUjkUkj)  = -4R2/15, 

( 4 j U i k U k j )  = - 2R2/15, (PuiUijjk.) = -(@I+ @ 2 + $ )  R2/8. 

The factors CD, and CD2 are of the order of unity and depend upon the shape of 
the kinetic energy spectrum. With a = 2kk'/(k2 + k'2), we have 

Invariants such as (ej hi, hj,) are given by relations similar t,o equations ( 5 . 1 1 )  
except that R2 must be replaced by -J2 .  The sign reversal comes from the 
pressure relation in equations (3-5).  The magnetic energy spectrum must be 
used to calculate two new coefficients, CD, and CD4. 

During the calculations of quadruple products, one often encounters quantities 
such as (uijukl) (uijulk), which must be evaluated according to equation (5 .2 ) .  
Each bracket contains two indices indicating components and two indices 
indicating derivatives. If the two component indices of the first bracket are 
summed with either the two component indices or the two derivative indices of 
the second bracket, the result is &R2. If the component indices of the first bracket 
are summed with one component index and one derivative index of the second 
bracket, the result is - &R2. If summation occurs within a bracket, between a 
component index and a derivative index, the result is zero. Otherwise the result 
is &R2. Thus, for example, we have 

( 5 . 1 3 )  I ( u i j u p q )  ( u i j u p p )  = &R2, 
( U i j u p q )  ( u i j u q p )  = - &R2, 

( u i j u p q )  ( U q i u j p )  = &R2, 
( u i j u j p )  ( u i q u p g )  = 0, 

( u i j u P j )  ( u q i u q P )  = $R2. 
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6. The exact dynamic equations 

applying suitable operators and averaging. These equations read as follows: 
A number of important relations can be derived from the basic equations by 

- - X - v R ,  
1 dK 
2 at 

2 dt 
--= l d M  X - h J ,  

dX M M J  
- = - (R-J) -Y3--DX,  
at 3 12 

S+Q-v- ,  
R 1 dR -- = 

2 dt 1; 
J 

Z - h -  1 dJ -- = 
2 dt 1; ' 

dR 
-=-D,. at 

(6.9) 

(6.10) 

Equations (6.1) and (6.2) show that energy is exchanged between the kinetic 
and magnetic modes a t  the rate X. The friction losses are expressed by vR and 
the ohmic losses by AJ. 

In the equation for the rate of change of X, all the dissipative terms have 
been included in a single term defined as 

D, = - V ( ~ i j k k  hi hj) - h (uij hikk hj) - h (Ui j  hi hjkk) .  (6.11) 

Furthermore, the term in Y 3  is of minor importance, and we can say that the 
nonlinear build up of X is controlled by the difference R-  J .  Thus, if R > J ,  
X tends to become positive and to deplete the kinetic mode. This tends to reduce 
R. If R < J ,  energy is fed to the kinetic mode and R tends to grow. This indicates 
a tendency to distribute the energy in such a way that R and J will be equal. 

The vorticity equation (equation (6.4)) contains, in addition to the ordinary 
terms, the quantity iZ that represents the production or destruction of vorticity 
by the Lorentz forces. The rate of change of Q is controlled according to equation 
(6.7) in which we have grouped nine dissipative terms in the expression 

D, = - V (Uijmm h, h j k )  - . . . - . . . - h (Ui j  hj hikkmm). (6.12) 

The rate of change of S is controlled by equation (6.6), which does not contain 
any magnetic term, and where D, includes all the dissipative terms. 
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The currents are controlled by equation (6.5) where Z appears as a production 
term. The variations of Z are given by equation (6.8), which resembles equation 
(6.7) except for the presence of special terms in RJ and in J 2 .  These terms will 
turn out to be of negligible importance, and in general Z is not too different from 
- Q. Since Y does not appear in any other equation, equation (6.9) will not be 
mentioned again in this paper. Finally, equation (6.10) indicates that A would 
be invariant in the absence of dissipative processes. The terms D,, D,, and D, 
collect various dissipative terms and play the same roles as D, and D,. 

7. Evaluation of the dissipative terms and closure 
We shall now introduce the sixth basic assumption, which is specially designed 

to express the length I, and E, and all the D quantities in terms of convenient 
quantities. This reduces the number of unknowns and leads to a closed system. 

Ordinary turbulence 

The eddy Reynolds number of an ordinary turbulent flow can be defined as 

K 
vR4 * 

w, = ~ 

When this number is low (say, less than lo),  the energy spectrum is not very 
different from a Gaussian spectrum and 1: is proportional to KIR. For a Gaussian 
spectrum, one can show that 

K 
1 2 -  -~ (7.2) '- 1-4R' 

When the Reynolds number is large, the spectrum falls according to Kolmo- 
goroff's law and cuts off abruptly above a certain wave-number. This wave- 
number corresponds to the length I,, and we have 

(7.3) 

where a is a universal constant. 
In order to have an expression valid for large and small Reynolds numbers, 

we shall assume the following relation, which combines equations (7.2) and (7.3) 

1 R R: 
- = 1 * 4 - + a - .  
1: K V  (7.4) 

A quantity such as S or D, depends no only upon the energy spectrum but also 
upon the phase relations between triplets of Fourier components. One can surmize 
that S cannot exceed some limit proportional to RS (see Betchov 1956) or that 
D, cannot exceed some limit proportional to R2. These considerations have led 
us to assume the relation 

where cs is a constant. Since Ds is obtained by applying the operator v(P/axiaxi) 
to the various parts of 8, this assumption replaces the Laplace operator by the 

D, = C, RBS, (7.5) 

factor 112. 
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M H D  Turbulence 

We shall now follow the clues from ordinary turbulence, and postulate the 
relation 1 J JB Rt 

1; M h h  
- = 1.4-+/?-+~-,  

where the constants /3 and y permit the assumption of different types of cut-off. 
We shall also assume the relation 

D, = cx(R4 + 2J t )  X (7.7) 

with similar expressions for D, and D,. If R > J ,  this amounts to replacing the 
viscous diffusion operator by Rt. However, if R < J ,  it  amounts to replacing 
the resistive diffusion operator by J t .  The factor 2 corresponds to the presence 
of two magnetic terms in equation (6.11). 

A closed system 

By combining the exact dynamic equations and the assumed expressions for the 
dissipative terms, one can now obtain a closed system of equations. We pro- 
grammed an electronic computer to determine the development of K, M ,  X ,  R,  
J ,  8, Q, and 2 by using equations (6.1) to (6.8) supplemented by equations (7.4) 
to (7.7). We specified the initial values of K ,  M ,  R, and J and always assumed 
zero for the initial values of the triple correlations 9, S, Q, and 2. We also specified 
arbitrary values for the numerical constants, as indicated with each example. 

I n  order to avoid large numbers, we used the meter and the millisecond as 
fundamental units. Thus, a hydrogen plasma of lo1' protons/cm3 having fluctua- 
tions of lo3 Gr.m.s. will have a magnetic energy per unit mass of M = 1O8m2/sec2. 
In  our calculations, this corresponds to M = 102m2/msec2. If the characteristic 
length (M/J )B  is 1 cm, we have J = 106msec-2. The same plasma, a t  a tempera- 
ture of lo5 "K will have a viscosity of 10-2m2/sec, which we convert to v = 

m2/msec (Linhardt 1960). The conductivity can be estimated a t  10, mho/cm 
and the magnetic viscosity becomes 10m2/sec, which we convert to h = 

m2/msec. These particular values are useful as references for the interpretation 
of figures 3 to 8. 

8. A simplified system of equations 
After solving numerically the system formed by the exact equations with the 

expressions assumed for the dissipative terms, we realized that certain sim- 
plifications were permissible. Since the coefficients YP, in equation (6.3) is of 
the order of unity, the term in which it appears can be neglected without serious 
consequences. It simply means that the production of 9 vanishes a t  R = J 
and not at some slightly larger values of R. The terms in R J  and J 2  in equation 
(6.8) are negligible in comparison with the other terms, and can be dropped 
(a4 is also of the order of unity). Since we always assumed cz = cn and took 
identical initial values for 2 and Q (namely, 2 = Q = 0 a t  t = 0) ,  this last step 
leads to the results 2 = - Q. 
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We shall also drop the term 2J* in the expression for D ,  and D,  since the 
choice of the constants cx and c, is of far greater importance. Finally, we shall 
drop the term giving I ,  at low Reynolds numbers, retain only the term with 
the constant y in the expression (7.6) for I , ,  and assume a = y. With these eim- 
plifications, the system becomes 

- -X-UR,  
1 dK 
2 dt 
_ _ _  - 

= X -hJ, 
1 dM 
2 d t  

A @  = S+Q-aR#, 
2 dt 
1 dJ -- = - Q - ~ R & J ,  
2 dt 
dX M 
dt 3 

dS R2 
- = - - c,R*S, 
dt 6 

- -  - -(R-J)-c,RiX, 

This system has a simple decaying solution in which K and M decay as t-l; 
R, J ,  and X as t-2; S and Q a t  t-3. Since the Reynolds number stays constant 
during such decay, the system formed by the exact equations and the assumed 
dissipative terms has the same property. 

The system shows clearly that it is the difference R- J which controls the 
energy transfer, with a time lag controlled by cx. Since R-* has the dimension 
of a time, it plays the role of a variable time constant during the evolution of the 
turbulence. The quantity Q is controlled by the difference R/u - J /h .  In  general, 
his larger than u and Q tends to become negative. In such cases, the fluid behaves 
as a homopolar generator and we shall define the homopolar regime as the state 
of turbulence when Q exceeds - S. This means that the Lorentz forces decrease 
the mean square vorticity faster than the usual stretching process can operate. 
The close relation between - Q and Z is perhaps related to the conservation of 
a canonical angular momentum in particle electrodynamics. 

9. Ordinary turbulence 

gives the following system 
For a discussion of ordinary turbulence, we drop all the magnetic terms. This 

-~ 
- vR, 

1 dK 
2 dt 
-- = 

-- l d R  = S-aR%, 
2 dt 

dS 
dt 
- = $R2 - C, R4S. 
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For low Reynolds numbers, equation (9.2) must be modified since the first term 
on the right-hand side of equation (7.4) must be used in place of the second. 
This leads to a decay law with K proportional to PS, as expected for a Gaussian 
spectrum. 

Since equations (9.2) and (9.3) form a closed system, a simple analysis is 
possible. By eliminating S ,  one obtains a second-order equation in R, where 

, dRldt 

FIGURE 1. Evolution of the mean square vorticity R in ordinary turbulence, for various 
values of the parameter p. In  the shaded region, the solution takes unacceptable 
negative values. 

the solutions can be outlined in the plane formed by dRldt and Rt. The only 
important parameter p is defined as 

As seen in figure 1,  several solutions lead to unacceptable negative values of R. 
It is only if - t < ,u < 0 that the solution decays properly. With these equations 
and given initial conditions, there is one particular initial value K = K, such that 
K(co) vanishes. If R(0) > K,, Rwould run negative, according to (9.1). However, 
the Gaussian term of (7.4) giving I ,  would no longer be negligible. If this term 
is retained, one finds that, as K approaches zero, the dissipation of R is increased 
and K decays without sign reversal. If K(0)  > K,, R may vanish while K ap- 
proaches a constant value. This also means that 9?" tends to infinity. Physically this 
means that some large eddies persist with a negligible rate of energy dissipation. 
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Clearly this situation should be unstable and the theory should provide for 
some effect of K on the stability of the R - S system. It is not clear whether K 
should affect the dissipative term D,or whether K should appear in the expression 
ofa fourth order cumulant. In  particular, a deviation from the assumption of zero 
cumulants could introduce a term in KR/1: in equation (9.3) for dSldt. In  order 
to clarify this point, it  would be very helpful to have experimental evidence on 
the variation of SIR+ with Reynolds number. 

10 x 1 0 4 1  1 

t/7 

FIGURE 2. The rapid build-up of the triple correlation in ordinary turbulence. 
= 10-4; a = 0.1; R(O)  = 1 0 4 ;  K ( O )  = 1; w, = loo; cS = 3.5; 7 = 0.0033. 

From known experimental values of S and R we have estimated a = 0.12 
and cs near 3. Starting from S = 0, one finds that S grows rapidly and then 
decays as t - 3 ,  as shown in figure 2. The characteristic time of the build-up is 

For 0 < t /T < 2, the viscous effects are negligible and our solution agrees with 
that of Proudman & Reid (1954). For t/r > 5, the dissipation closely matches 
the production and we have dynamic equilibrium. Thus our solution contains 
both the initial and the final phases. 

10. Some numerical calculations 
Several calculations have been performed with the full set of equations, in- 

cluding the terms in RJ and J2 and the Gaussian contributions to I ,  and I, .  In  
general, the triple correlations build up very rapidly from zero in a time of the 
order of T (see equation (9.5)). These calculations do not correspond to specific 
problems; they are simply designed to illustrate various processes. 

A decaying magnetic field is shown in figure 3. Although J initially increases, 
the ohmic losses lead to an exponential decay. 

The exponential growth of the magnetic model shown in figure 4 is due to the 
effect of M on the build-up of X. A small initial value of M ,  together with a large 
R leads to an increase in”. Eventually the transfer uses up all the kinetic energy. 

The opposite case is shown in figure 5. Beginning with small values of K and 
R, we observe a build-up of K .  Except for the early rise, R decreases because 
- CI exceeds S :  we have a homopolar regime. 
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FIGURE 3. A n  example of decaying magnetic energy M .  The kinetic energy K remains 
constant. v = 10-4; h = 10-2; a = 0.1; = 0-1; y = 0; cx = cn = cz = cs = 4. 

1 

1 

10-4 1 
FIGURE 4. A n  example of magnetic instability. The magnetic energy M ,  the mean square 
electric current J and the magnetic power S grow exponentially. v = h = 
a = 10-1; y =z 1;  p = 0; cx = 9; cz = ca = 10; cs = 4. 
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Figure 6 shows another typical case of homopolar regime with slight produc- 
tion of K .  The ratio - StjS is of the order of 3 during the process. 

In  figure 7 we examine the role of the friction constants. If the dissipative 
terms are too small, negative and meaningless values of R can be obtained. 
However, if the constants are sufficiently large, the solutions are well-behaved. 

106 I, 
lo4 

10-21 

I , I  

t 
100 x 1 0 - ~  

FIGURE 6. Build-up of the kinetic energy K at the expense of the magnetic energy M .  
y = 10-4;  = 10-2; a = 0.1; /3 = 0.1; y = 0; cx = c, = cz = cs = 4. 

t 

40 x 10-3 
100 

10-2 

FIGURE 6. An example of strong interaction, where the destruction of vorticity by the 
Lorenta forces exceeds the turbulent production. Y = a = 0.1; /3 = 0.1; A = 
y = 0; cx = c* = cz = cs = 4; Y > s. 

Since the ohmic losses are linear in J ,  while the transfer of energy is nonlinear, 
one can expect that the initial value of M may be of decisive importance. An 
example of this process is shown in figure 8, which shows the results of three 
calculations starting from identical initial conditions except for the changes in 
M(0).  For M(0)  = 3, the magnetic mode decays from t = 10-4mseo on. For 
M(0)  = 10, it first drops, but the transfer becomes significant near t = 10-3. 
Finally, M and J are stabilized at some slowly decaying levels. 
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10-2 

FIGURE 7. Analysis of the role of the constants in the case of figure 6 .  v = 10-4;  h = 10-2 ;  
CL = /I = 0.1; y = 0 ;  cx = cra = cz = cs  = c (say); -, c = 2; ----, c = 4; -.-., c = 8; 

, c = 16. _ _ - _  
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FIGURE 8. Non-linear dynamo build-up of M .  These three cases have the same initial con- 
ditions except for M (  0). If M ( 0 )  is sufficiently large, a non-linear build-up occurs. v = 
h = 
M(0)  = 3; - - - -  M ( 0 )  = 0.3. 

CL = /l = 0.1; = 0 ;  CX = 0.5; = cz = 16; cs = 4. - M(0)  = 10; ---- 

11. The case of weak Lorentz forces 
When the magnetic variables are sufficiently small, that is, when M < K ,  

J < R, the velocity field modifies the magnetic field while the magnetic field no 
longer affects the velocity field. This is equivalent to the statement that the 
Lorentz forces are negligible. 
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Time dependence 

Let us consider the case where the kinematic averaged quantities are stationary 
(or nearly so). The basic equations now depend linearly upon the magnetic field, 
and we can assume without loss of generality that the averaged magnetic quan- 
tities vary as exp (2qRgt). This leads to the equations 

qRBM = X - AJ, (11.1) 

(11.2) (q+ y ) B J  = - Q, 

(2q + ex) x = 4 ~ ~ 4 ,  (11.3) 

a M R  
3v ' 

(2q+c , )Cl  = -___ (11.4) 

(11.5) 

where we have not assumed a = y, as previously. 

solution if 
A discussion of this fourth-order system shows that there is a t  least one unstable 

crhc, < 1. (11.6) 
Y% 

If this inequality is not satisfied, two positive roots are still possible. Note that 
c, has a destabilizing effect because it leads to low currents and low ohmic losses. 

Stationary flow 

We shall now take q = 0 and assume that the spectrum of hi has a maximum 
near some wave-number k, and then drops as k-" up to the Kolmogoroff cut-off 
at k = k,. We shall also assume that 2 < n < 4 so that J is determined by the 
components near k, while I ,  is comparable to I , ,  with k,l, x 1. This means that 

J z Mk;. (11.7) 

We shall now estimate the highest possible value of X .  Since it depends upon 
two spectral components of h, and one ofuii, it  is clear that X cannot exceed some 
ceiling proportional to M R i  where R ,  is the contribution to mean-square 
vorticity R from components with wave-numbers between zero and 2k,. With the 
assumption that the velocity spectrum falls as k-* (Kolmogoroff), we find 

We can now define a non-dimensional rate of energy transfer as 

(11.8) 

(11.9) 

and expect 1g1 to remain smaller than some number of order unity. 
Let us now consider Q. It depends upon E ,  F, and H (see equation ( 5 . 1 0 ~ ) ) .  

Looking at equations (5.9), we note that H contains higher derivatives than E 
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or F and therefore should be the dominant term. With the assumed shape of the 
magnetic energy spectrum and referring to equation (5.5b), one finds 

k, I, = ( k2/k1)3(5-n). (11.10) 

If k,l ,  < 1, H is the dominant term in equation ( 5 . 1 0 ~ )  and the maximum value 
of s2 can be estimated at  

We now define a non-dimensional rate of change of the currents as 

0 2  < RM2k;1F2. (11.11) 

(11.12) 

and we expect 15) to remain smaller than some number of order unity. 

and (11.9), that 

Since the rate of kinetic energy dissipation is given by 

For a stationary flow, it follows from the energy relation, equations (11.1) 

(1  1.13) k, = 4 2  @RlA-BE,&. 

e = vR = v3k+, 
this corresponds to 

k, = d2  @(e/A3)8. 

(11.14) 

(11.15) 

This corresponds to a relation given by Moffatt (1961) without the factor [. 
By introducing equation (1 1.12) into the current relation (equation ( 1  1.2)), 

we obtain 
3/k,E, = 6. (11.16) 

We can eliminate y and I, from this expression by using equations (11.5) and 
(11.10). The result, using (11.14)) is 

(1  1.17) 

We have learned from ordinary turbulence that S reaches about half its 
maximum value, estimated on the assumption of zero fourth order cumulants. 
This leads to the idea that f ;  and 6 should also be nearly constant and of the order 
of unity. For this to be true, equations (11.15) and (11.17) must coincide and 
this is possible only if n = 11/3. This particular spectral law has already been 
found by Golitsyn (1960) and by Moffatt (1961) by different procedures. 

We can also use equations (11.3), (11.4)) and (11.5) to obtain the damping 
constants, with the results 

(1  1.18) 

(1 1.19) 

(11.20) 

4 Fluid Mech. 17 
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This means that the dissipation of R is primarily due to the terms in vkq while 
the dissipation of J and X is equivalent to an operator (vh)* k2,. This is due to the 
fact that the spectra of X and J are not as rich in high wave-numbers as the 
spectrum of R. If we define the wave-number k,  = k i  k f ,  we can express D ,  as 

D ,  = hkgX.  (11.21) 
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Appendix 
In  order to study the invariants containing one component of u, two com- 

ponents of h, and three derivatives, we begin by listing all relevant combinations 
(the second equality will be demonstrated later) : 

a = ( U i  hj hijkk) = H ,  

b = ( U j h i h i j k k )  = G, 

C = ( U i h j k h i j k )  = -E ,  

d = ( U j  hij h i k k )  = - G, 

e = ( U j h i k h i j k )  = 0, 

f = (Uj hj, h i k k )  = E - F ,  

g = ( U j h k i h i j k )  = 0,  

h = (Ui j  hi h i k k )  = - H ,  

j = (Ui j  h k  h i j k )  = E - H ,  

k = ( U j i h j h i k k )  = F - E,  

1 = ( U j i h k h i j k )  = 0,  

m = (Ujk hi h i j k )  = - G, 

n = ( U i j h i k h j k )  = E ,  

p = {Ugj hi, h k j )  = F ,  

q = (uij hki h jk )  = 0,  

r = { U i j h k i h k j )  = G, 
S = ( U i k k h i j  hi) = H - F - E,  

t = (Uijk  hij h k )  = H - E ,  
U = <Uikkhj ihi)  = 0,  

V = ( U i j k h j i h k )  = 0,  

W = (Uijk  h j k  hi) = - F ,  
2 = (Uijkk hi hj) = F + E - H .  
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According to the location of the derivatives, the invariants fall into 6 classes: 
from a to b, c to g,  h to m, n to r ,  s to w, and finally x. All terms which vanish 
because uii = 0 or hi6 = 0 have been omitted. 

Similarly, we can list all the vectors formed with one u, two h's, and two 
derivatives. It includes 26 vectors such as, for example 

(ui hk hkrnm), 

<ui ' krn hkm), 

(uki hrn hkm), 

(ukim hk hm>. 

Since an averaged vector must vanish in an isotropic field, the divergence of 
each such vector must also vanish. This gives 26 equations. For the above 
examples one finds: 

d + b  = 0, s + p + j  = 0, 

2e = 0, x + t + w  = 0. 

Several of these equations are redundant and, after reduction, only four 
quantities are independent. We selected the invariants h, n, p ,  and r and re- 
labelled them - H ,  E ,  F ,  and G. In terms of these new parameters, the 26 equa- 
tions lead to the equalities listed above. 

The Lorentz forces Fi are given by 

< = hkhik-hkhki. (A 1) 

(A 2) 

Their rate of work is ui Fi and simple operations show that 

(UiFi) = (Uihkhik) = - ( U i k h i h k )  = -x. 
We can always rotate the axes in such a way that, at  a particular point, hi lies 
along the x1 axis. Then we have ui Fi = - 8ul/8xl hZ,, which shows that X measures 
the mean rate of stretching of h2 produced by the velocity field. 

The electric current density Ii is simply the curl of hi. The quantity U i k I i I k  

measures the mean rate of stretching of I 2  by the velocity. The list given in this 
appendix leads to the following result: 

( ~ i k I i I k >  = F - E - G  = Y .  (A 3) 

We can also form the scalar product of the vorticity and the curl of the Lorentz 
forces 4. Our list of invariants leads to the result 

(curlui.curlFi) = E+F-H = SZ. (A 4) 

4-2 


